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Abstract

Tian, Xiaochuan. M.S. The University of Memphis. August 2015. 3D Numerical
Models for Along-axis Variations in Diking at Mid-Ocean Ridges. Major Professor: Dr.
Eunseo Choi.

Bathymetry reveals diverse morphologies at Mid-ocean Ridges (MORs). Previous

studies show that the morphologies at slow spreading MORs are mainly controlled by the

ratio (M) between rates of magma supply and plate extension. 2D models successfully

explain many cross-sectional observations across the ridge axis. However, magma supply

varies along the ridge and the interaction processes between the tectonics and magma-

tism at MORs are inevitably three dimensional. We investigate the consequences of this

along-axis variations in diking in terms of faulting patterns and the associated structures

using a 3D parallel geodynamic modeling code, SNAC. Many observed structural features

are reproduced. We also propose asynchronous faulting induced tensile failure as a new

possibility for explaining corrugations. M̄ = 0.6425 is suggested as a boundary value for

separating abyssal hills and oceanic core complexes (OCCs) formation. Previous incon-

sistency for OCCs formation between 2D model results (M = 0.3∼0.5) and field observa-

tions (M < 0.3 or M > 0.5) is reconciled by our 3D along-ridge coupling argument.
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1 Introduction

1.1 Review of Literature

Geodynamic modeling as well as a variety of geological, geophysical observations and

lab experiments have provided insight into the processes occurring at the mid-ocean ridges

(MORs) [e.g., Tucholke and Lin, 1994, Blackman et al., 2002, Behn et al., 2006, Behn

and Ito, 2008, Ito and Behn, 2008, Baines et al., 2008, Escartı́n et al., 2008, Canales et al.,

2008, Dick et al., 2008, Dannowski et al., 2010, Olive et al., 2010, Reston and Ranero,

2011, Reston and McDermott, 2011]. In particular, the advent of high-resolution multi-

beam bathymetric data has made it possible to discover differences in axial topography

between slow and fast spreading ridges and morphological transition from the center of a

ridge segment to the tip of the ridge segment.

Variations in morphologies among different MORs are mainly controlled by four fac-

tors: magma supply, tectonic strain, hydrothermal circulation and spreading rate [Fowler,

2004]. Among them, the spreading rate shows the strongest correlation with the ridge

morphology. Slow-to-intermediate spreading ridges (half spreading rate less than 4 cm/yr)

produce median valleys that are typically 10∼20 km wide and 1∼2 km deep (e.g., Mid-

Atlantic Ridges, Figure 1a). Fast-spreading ridges (half spreading rate greater than 5

cm/yr) like the East Pacific Rise have axial highs that are 10∼20 km wide, 0.3∼0.5 km

high (Figure 1b).

Slow spreading ridges exhibit along-axis variations in off-axis morphology, the width

and depth of median valleys and crustal thickness. Figure 2 shows that the topographic

profile near the center of the ridge segment (A-A′) is rather symmetrical and has a shorter

wavelength with a median valley ∼12 km wide and ∼1 km deep. In constrast, the near-

tip profile (B-B′) is asymmetrical and has a much longer wavelength with a median val-

ley wider than 30 km and shows a greater relief (∼3 km). Gravity data of different ridge

segments along MAR (28∼31 ◦N and 33∼37 ◦N) suggests that the maximum along-axis

1



(a) Slow spreading Mid-Atlantic Ridge (b) Fast spreading East Pacific Rise

Figure 1: Profiles of bathymetry across MORs.

variation in crustal thickness ∆Hc of a single segment increases with the segment length

L [Chen and Lin, 1999] and the relationship is ∆Hc(L) = 0.0206L (Figure 3).

Figure 2: Two bathymetric profiles across the Mid-Atlantic Ridge around 30◦N with verti-
cal exaggeration of 10. A-A′ is closer to the segment center while B-B′ is at the tip of the
segment.
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Figure 3: Relationship between the maximum crustal thickness variations (∆Hc) along a
ridge segment and the segment length (L). The dashed line is the best-fit linear regression
of the combined data [Chen and Lin, 1999].

Magma supply at the MORs is mostly a passive process when no hot plume is present

[Fowler, 2004]. Driven by both vertical pressure difference and buoyancy due to horizon-

tal density difference, hot mantle rises up to fill the vacated room produced by the plate

separation. Decompression of the upwelling hot mantle results in partial melting. The

generated magma upwells to the upper crust and feeds the dikes at the ridge center.

The passive nature of the melting process at the MORs leads to the major difference

between fast and slow spreading ridges. At fast spreading ridges, magma is generated at

a higher rate than at slow spreading ridges. Thus, fast spreading ridges experience more

frequent diking, which efficiently releases stresses generated by far-field forces that drives

the plate motion. In contrast, diking is less frequent at slow spreading ridges and can only

partially release the stresses associated with plate motion. Thus, the brittle lithosphere of

slow-spreading ridges experiences internal deformations (e.g., tectonic processes like nor-

mal faulting) when the deviatoric stress exceeds the internal strength of the lithosphere.

Buck et al. [2005] defined the ratio between the rates of dike widening and plate sepa-

ration as M = Vdx/2Vx, where Vdx is the rate of horizontally opening by diking at the ridge

center and Vx is the half spreading rate of the MOR. According to this definition, M = 1

3



represents the case where dike injection is so frequent that magma supply is sufficient to

release all the tensional stresses from plate separation. M = 0 corresponds to the case of

no magma supply, in which diking does not account for any of the plate motion and there-

fore plates kinematics requires plates to go through internal deformations. As shown in

Figure 4, an axial high forms at a fast spreading ridge (M = 1) due to buoyancy from lat-

eral density difference across ridge axis but a median valley forms at a slow-spreading

ridge (M = 0.5) due to near-axis normal faulting, which is in turn caused by the stretching

of oceanic lithosphere.

Figure 4: Upper: modeling result for fast spreading agrees well with East Pacific Rise.
Lower: modeling result for slow spreading ridges agrees well with the bathymetry of
Mid-Atlantic Ridge. Adapted from [Buck et al., 2005].

Tucholke et al. [2008] expand the investigation on the role of M in mid-ocean ridge

mechanics. They focus on the faulting behaviors of slow spreading ridges and find that

4



the OCCs are most likely to form when M varies from 0.3 to 0.5. When M = 0.7 (Fig. 5),

repeated diking pushes faults that have formed at the spreading center away from the

ridge axis. Since the thickness of the brittle layer increases away from the ridge axis due

to cooling effects, frictional and bending energy for maintaining the fault also increases.

When the energy needed for maintaining an existing fault exceeds the energy for breaking

a new near-axis fault, the old fault is replaced by the new one and most of the extension

is accommodated by the new fault. When M = 0.3∼0.5, the normal fault remains active

for a long time and rotates to a low angle normal fault (detachment fault), exhuming the

lower crust and mantle materials to the seafloor. When M < 0.3, most of the tension is

accommodated by intra-plate deformations rather than by diking and as a result, faulting

pattern is more complicated and unsteady.

Figure 5: Snapshots of modeled fault behavior and seafloor morphology for M = 0,
0.5, and 0.7; model allows thermal evolution. Structural interpretation is superimposed
on modeled distribution of strain rate; model time is indicated in panels at lower right;
dashed white line at bottom is 600 ◦C isotherm and approximates the brittle-ductile tran-
sition; dashed seafloor is original model seafloor, red seafloor is that formed dominantly
by magmatic accretion, and solid bold seafloor is fault surface. Adapted from [Tucholke
et al., 2008, Whitney et al., 2012].
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1.2 Statement of Research Purpose

The M-factor formulation used in the previous 2D models [e.g., Buck et al., 2005, Tu-

cholke et al., 2008] successfully explained major features found in across-ridge profiles

of seafloor bathymetry. However, 2D models have limitations in studying the along-ridge

variations in morphology and faulting patterns. Magma supply at fast spreading ridges

seems always sufficient for accommodating plate motions with little variations along the

ridge axis. The relatively uniform topography along fast spreading ridges is considered to

be consistent with the uniform abundance of the magma supply. However, along the slow

spreading ridges, bathymetry, gravity anomaly and results from reflection and refraction

seismology show strong correlation with variations in crustal thickness [e.g., Lin et al.,

1990, Tolstoy et al., 1993, Chen and Lin, 1999, Ryan et al., 2009]. Because oceanic crust

is mainly formed by upwelling magma at the ridge center, variation in the thickness of

the crust implies variation in magma supply. At slow spreading ridges, the degree of cool-

ing by hydrothermal circulation, thermal structures and even local spreading rate [Baines

et al., 2008] also vary both along and across the ridge axis and they appear interrelated.

Thus, for slow-to-intermediate spreading ridges, the interactions between tectonics and

magmatism at MORs are inevitably 3D processes and 3D numerical models are desirable

for investigating the factors that controls both across- and along-ridge morphology varia-

tions.

The purpose of this thesis is to extend the M-factor formulation originally developed

for 2D models to 3D by implementing it into a 3D numerical modeling code SNAC [Choi

et al., 2008]. By systematically exploring the behaviors of the 3D models and comparing

them with observations, we aim to better understand how the along-axis variation in dik-

ing at slow-to-intermediate mid-ocean ridges is responsible for the observed morpholo-

gies.

6



2 Methods

2.1 Method of approach

The numerical modeling code, SNAC (StGermaiN Analysis of Continua), is an explicit

Lagrangian finite element code that solves the force and energy balance equations for

elasto-visco-plastic materials. Figure 6 shows major components of SNAC.

Figure 6: Essential components of the numerical method.

For each time step, strain and strain rates are updated based on the initial or previous

velocity fields under the constraints from boundary conditions. A constitutive model re-

turns updated stresses corresponding to these deformation measures. Internal forces are

then calculated from the updated stresses, which is plugged into the momentum balance

equation together with the body force term. Then, the damped net force divided by in-

ertial mass yields acceleration at a node point, which is time-integrated to velocity and

displacement.
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A 3D domain is discretized into hexahedral elements, each of which is in turn divided

into two sets of tetrahedra. This symmetric discretization prevents faulting from favoring

a specific direction or “mesh grains”.

Rheology for the oceanic lithosphere is assumed to be elasto-visco-plastic (EVP).

When viscosity is high at low temperature, the EVP rheology implemented in SNAC

essentially becomes the Mohr-Coulomb plasticity with strain weakening that can create

shear bands that behave like faults. Strain softening is realized by cohesion decreasing

with increasing amount of permanent (i.e., plastic) strain. I assume this relationship is lin-

ear for simplicity. It is sufficient for a full description of such a linear strain weakening

to define initial and final values of cohesion and a critical plastic strain at which cohesion

becomes the final value. I define the rate of strain weakening as the cohesion difference

divided by the critical plastic strain and use it as one of the model parameters. When tem-

perature is high and viscosity is low, the rheology becomes the Maxwell viscoelasticity

and can model creeping flow. This property of the EVP model makes it possible to set up

a structure with a brittle lithosphere and a ductile asthenosphere through a proper tem-

perature distribution. Rheological parameters are taken from previous studies that use a

similar rheology [e.g., Buck et al., 2005; Tucholke et al., 2008] or from lab experiments

[e.g., Kirby and Kronenberg, 1987].

For 3D diking processs, the strain ∆εxx associated with diking leads to stress changes,

∆σxx, ∆σyy and ∆σzz. These stress changes due to diking are computed according to the

linear elastic constitutive equation σij = λεkkδij + 2µεij .

2.2 Model Setup

The 3D models have a common geometry of 60 km × 20 km × 20 km in x, y and z axes

respectively with a resolution (∆x) of 1 km (i.e., ∆x is the size of each hexahedron el-

ement) (Fig. 7). The initial temperature field linearly increases from 0 ◦C at the top sur-

face to 240 ◦C at the depth of 6 km, reflecting enhanced cooling due to hydrothermal
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Figure 7: Model setup.

circulation. Below 6 km, the temperature profile follows the instantaneous cooling of a

semi-infinite half-space model of moving plates [e.g., Turcotte and Schubert, 2002]. Two

sides perpendicular to the z coordinate axis are free-slip. Hydrostatic sea water pressure

is added on top of the seafloor. The heights of the water columns are locally determined

as (4000 - h(x, z)) m, where h(x, z) is the topography at a location, (x, z). The bottom

boundary is free of shear stresses and is supported by normal stresses that equal to the lo-

cal lithostatic pressure (Winkler foundation) following Buck et al. [2005]. Temperature is

fixed at 0 ◦C on the top surface and at 1300 ◦C on the bottom surface.

Diking, controlled by the factor M, is assumed to occur in the middle of the doamin

(Fig. 7), where the lithosphere is the thinnest.

We adopt the linear isotropic elasticity, power-law viscosity of dry diabase [e.g., Kirby

and Kronenberg, 1987, Buck et al., 2005] and the Mohr-Coulomb plastic model. The

complete list of model parameters are given in Table 2.

Before running 3D models, I have run hundreds of psedudo-2D models for initial

setup and benchmarking with previous studies [e.g., Buck et al., 2005, Tucholke et al.,

2008]. Preliminary pseudo-2D results show that the model behavior in faulting pattern is

sensitive to the rate of strain weakening. Two cases of strain weakening are tested in the
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3D models. In one case (denoted as Type 1 weakening), cohesion linearly decreases from

44 MPa (denoted as Ci) to 4 MPa (Ce) for plastic strain accumulating from 0 (ε1pi) to 0.1

(ε1pe). It has a characteristic fault slip of 150 m for pseudo-2D models and 300 m for 3D

models. The other case (Type 2 weakening) assumes cohesion linearly decreasing from

44 MPa (Ci) to 4 MPa (Ce) for plastic strain accumulating from 0 (ε2pi) to 0.33 (ε2pe). In

this case, the characteristic fault slip for pseudo-2D models is 500 m and for 3D models

is 1 km. The characteristic fault slip is defined as ∆Xc=3∆xεpe where 3 ∆x represents

the thickness of the shear bands which is usually 2 to 4 times ∆x (size of a hexahedron

element) [Lavier et al., 2000]. When ∆Xc amount of slip takes place at the fault interface,

the cohesion of the material at the faulting interface decreases to Ce. In this way, under

the same amount of ∆Xc, models with different resolution should produce the same fault-

ing patterns.

Although how to estimate the M values from observations is a subject of on-going re-

search, constraints are available from a large dataset of bathymetry, gravity and seismic

surveys as well as geological drilling. Generally, at slow spreading ridges, magma supply

focuses at the center of the ridge segment and decreases towards the tip of the segment

[e.g., Tolstoy et al., 1993, Chen and Lin, 1999, Carbotte et al., 2015]. There is also evi-

dence for shorter wavelength of 10 to 20 km discrete focus of magma accretion along the

ridge axis [Lin et al., 1990].

The numerical cost of a 3D model is non-trivial. For 2 Myr of model time, each model

usually runs on 192 cores for about 48 hours (i.e., around 104 core-hours).

Based on the observational constraints and computational cost, I start considering a

few scenarios of variations in M along the ridge axis. They are 1) three types of functional

forms, linear, sinusoidal and square root; 2) three ranges of M variation along the ridge

axis, 0.5 to 0.7, 0.5 to 0.8 and 0.2 to 0.8; and 3) two types of weakening rate, type 1 and

type 2.
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While 18 models are possible, I could run 15 models with the available computational

resources. The complete list of the models is given in Table 1.

Table 1: List of 3D numerical experiments.

Model M range Functional Form Type of weakening For short
1 0.2-0.8 Linear Type 1 M28LinT1
2 0.2-0.8 Sinusoidal Type 1 M28SinT1
3 0.2-0.8 Square Root Type 1 M28SqrtT1
4 0.5-0.7 Linear Type 1 M57LinT1
5 0.5-0.7 Sinusoidal Type 1 M57SinT1
6 0.5-0.7 Square Root Type 1 M57SqrtT1
7 0.5-0.7 Linear Type 2 M57LinT2
8 0.5-0.7 Sinusoidal Type 2 M57SinT2
9 0.5-0.7 Square Root Type 2 M57SqrtT2
10 0.5-0.8 Sinusoidal Type 1 M58SinT1
11 0.5-0.8 Square Root Type 1 M58SqrtT1
12 0.5-0.8 Linear Type 2 M58LinT2
13 0.5-0.8 Sinusoidal Type 2 M58SinT2
14 0.5-0.8 Square Root Type 2 M58SqrtT2
15 0.8-0.8 Constant Type 2 M88ConT2
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Table 2: Summary of 3D Model Parameters

Number Variable Description Value Units
1 Wdike Dike width 2 km

2 Ddike Dike depth 8 km

3 H Crustal thickness at dike 6 km

4 dT/dy Crustal thermal gradient 40 K/km

5 T1 Temperature at lower boundary of crust 240 ◦C

6 g Gravity acceleration 10 m/s2

7 demf Dimensionless force damping factor 0.8 N/A
8 dt Time step 1.5768e+07 second

9 topokappa Parameter for topography smoothing 0 N/A
10 shadowDepth Ghost elements for parallel computing 2 N/A
11 meshI Mesh number in X direction 60 N/A
12 meshJ Mesh number in Y direction 20 N/A
13 meshK Mesh number in Z direction 20 N/A
14 LI Length in X direction 60 km

15 LJ Length in Y direction 20 km

16 LK Length in Z direction 20 km

17 ρ Density 3000 kg/m3

18 λ Lamé’s first parameter 30 GPa
19 µ Shear modulus 30 GPa
20 refvisc Reference viscosity 0.125e-17 Pa−n/s

21 activationE Activation Energy 276.0e+3 kJ/mol

22 vismin viscosity minimum cutoff 1.0e+18 Pa ∗ s
23 vismax viscosity maximum cutoff 1.0e+27 Pa ∗ s
24 srexponent Power of power law in viscosity 3.05 N/A
25 ε1pi initial plastic strain for piecewise Type 1

weakening
0 N/A

26 ε2pi initial plastic strain for piecewise Type 2
weakening

0 N/A

27 ε1pe end plastic strain for piecewise Type 1
weakening

0.1 N/A

28 ε2pe end plastic strain for piecewise Type 2
weakening

0.33 N/A

29 Ci initial Cohesion for piecewise weakening 44 MPa
30 Ce end Cohesion for piecewise weakening 4 MPa
31 φ Friction angle 30 ◦

32 remeshtimestep Remesh when timestep reach its value 400000 N/A
33 remeshlength Remesh when the fraction between current

and initial global minimum of the ratio of
the volume of a tetrahedron to one of its
surface area is below 0.6

0.6 N/A

34 topTemp Surface temperature 0 ◦C

35 bottomTemp Bottom temperature 1300 ◦C

36 Vx Half spreading rate 7.9e-10 m/s
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3 Results

3.1 Reference model

I consider the model with M varying linearly from 0.2 to 0.8 along the ridge axis with

type 1 weakening rate as the reference model and denote it as M28LinT1 following the

shorthand notations given in Table 1. I describe the general model behaviors in this sec-

tion and then provide details and mechanisms of the major structural features of the model

in the next section.

For the first 7.5 kyr (Figure 8.a), normal faults, represented by localized plastic strain,

begin to form near the ridge axis. Because stresses due to plate extension accummulate

faster at the lower M side than at the higher M side, faults first initiate at the lower M side

and then propagate to the higher M side. Such an asynchronous initiation of faults along

the ridge axis creates offset in breakaway at later stages, i.e., the breakaway at the lower

M side moves further away from the ridge axis than that of the higher M side (Figure 9).

Figure 8: Evolution of plastic strain and surface topography of the reference model
M28LinT1. Each snapshot shows plastic strain plotted on the model domain, the five
times vertically exaggerated topography and the time at which it is taken. The initial
seafloor is at 0 km of elevation. The black dashed lines are the terminations of faults. The
red dashed lines in g) and h) are the transfer faults that connect the terminations. The inset
in f) plots plastic strain with opacity linearly proportional to plastic strain value.
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Figure 9: Bird’s-eye view of a breakaway in the reference model at a) 85 kyr, b) 135 kyr,
c) 265 kyr and d) 295 kyr. The breakaway is marked by green solid line in a). A narrow
zone of depressed topography (“trough”) is marked by red dashed line inside the medain
valley (blue area) in a). Color scales are the same with those in Figure 8.

Likewise, the model produces a median valley that widens and deepens with rates in-

versely proportional to the M value (i.e., rate of local magma supply) (Fig. 8a-c; Fig. 9a-

d).

By 52.5 kyr (Figure 8.b), the normal fault on the right-hand side of the ridge axis re-

mains active while the one on the left becomes inactive. The upper part of the active fault

plane (shown as plastic strain in the model) is exposed to the seafloor. As the active fault

slips, crust at the footwall bends in a clockwise rotation as is illustrated in Figure 10.

The active normal fault on the right rotates to a lower dip of ∼30 ◦ at the root of the

fault and to ∼0 ◦ at the exposed fault interface after about 240 kyrs (Fig. 8.c). However,

the normal fault at the higher M side (especially for M > 0.7) experiences less fault ro-

tation and the termination of the fault is closer to the ridge axis. The maximum relief be-

tween the breakaway and the trough inside the median valley becomes larger than 1 km.

In addition, ∼2 km wavelength corrugations begin to form between the breakaway and

termination at the lower M side (M < 0.35). I discuss the formation mechanism for the

corrugations in Discussion.
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Figure 10: Illustration of the development of bending stress in lithosphere associated with
faulting at the MOR. The blue line is the neutral plane where σxx = 0. Above the neutral
plane is compression (σxx < 0) and beneath it is tension (σxx > 0).

By 650 kyr (Figure 8.d), the detachment fault reaches its lowest dip angle and its ter-

mination stops moving away from the ridge axis. The original breakaway of this detach-

ment has already moved out of the model domain. The total fault offset at this point is

greater than the thickness of the crust and thus would be sufficient for exhuming the upper

mantle materials.

A new near-axis fault first appears at the center of the model domain with M ∈ (0.5,

0.65) and then propagates in positive z direction (Fig. 8.d,e). At this time, the initial de-

tachment fault is still active and takes up most of the extension.

The new near-axis normal fault at the higher M side cuts through the hanging wall of

the detachment fault at 880 kyr (Fig. 8.f). It coexists with the initial detachment fault and

begins to accommodate most of the intra-plate extension. This event is called the “inward

fault jump” [Tucholke et al., 1998; Dick et al., 2008].

By 910 kyr (Fig. 8.g), the inward fault jump completes in the M > 0.5 region: the new

high-angle fault takes up all the extension and the initial detachment fault becomes com-

pletely inactive. The block that was previously a hanging wall to the detachment becomes

a footwall of the new fault, passively moving with the plate to the negative x-axis direc-

tion. At the lower M side, the detachment is still active and the hanging wall continues to

move toward the positive x-axis direction (Figure 11). This dextral sense of relative mo-
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tions between the high and the low M side produces a region of sinistral shear stress σxz

(Figure 12) and eventually creates a transfer fault (Fig. 8.h). As the inward jumped fault

evolves, another dome ajacent to the initial OCC is produced at the higher M side by 1000

kyr.

X

Z

M0.2

M0.8 885 kyr

Figure 11: Bird’s-eye view of velocity field with plastic strain ploted with opacity linearly
proportional to its value. (color scale is the same as Figure 8.a))

Figure 12: Bird’s-eye view of σxz.
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3.1.1 Constant M model M88ConT2

As a comparison to the varying M models, a constant M model is run. It shows similar

behaviors with corresponding 2D models from the previous studies and does not show

along-ridge variations in terms of morphology and faulting.

As shown in Figure 13, model M88ConT2 produces a ∼20 km wide and 1∼2 km

deep median valley, which is similar to the observation of the Mid-Atlantic Ridge. The

width and depth of the median valley is almost constant along the ridge as contrast to the

varying M models. The variation of the location of the breakaway and termination along

the ridge that is mentioned in the reference model (M28LinT1) does not show up. Be-

cause the magma supply is constant along the ridge with M = 0.8, there is no stress per-

turbation along the ridge. Thus, the normal faults along the ridge initiate at the same time

and the slipping rate of the fault is also constant along the ridge axis. The synchronized

fault initiation results in no offset between breakaways and the constant sliping rate pro-

duces no along ridge axis variation in the position of the termination. In addition, neither

corrugations nor mullion structures are generated. Normal faults alternate on each side

of the ridge axis with a period of ∼10 km of plates extension and produce symmetrical

shorter wavelength abyssal hills.

Plastic Strain

50kyr 100kyr 250kyr

480kyr 660kyr 805kyr

Plastic Strain Plastic Strain

Plastic StrainPlastic StrainPlastic Strain

X

Y
Z

Figure 13: Evolution of plastic strain and surface topography of the model: M88ConT2
(Table 1). Color scale of topography is the same as Figure 8.a.
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3.2 Main structural characteristics

I describe seven structural characteristics of the models: location of the termination, ge-

ometry of the trough, inward fault jump, fault alternation, mass wasting, hourglass-shaped

median valley and corrugations and mullion structures. Since the details of these fea-

tures differ among the models, they are useful for delineating and contrasting complicated

model behaviors.

3.2.1 Location of termination

Location of a fault termination varies along the ridge as indicated by black dashed lines in

Figure 8 and black arrows in Figure 14. The highest strain rate regions (red) in Figure 14

can be interpreted as the active detachment fault interfaces. Compared to the two slices

with M > 0.5, the distances between terminations and the ridge axis at the lower M side

(M <= 0.5) is larger and the dip angles of the detachment faults are lower. For the ridge

region with M > 0.5, the fault root is pushed away from the ridge axis due to excessive

diking while the termination is closer to the ridge axis due to lower slipping rate of the

fault and the asynchronous initiation of faulting along the ridge. Thus the distance be-

tween the termination and the fault root is smaller at the higher M side and the dip angle

of the fault is higher. However, among the three slices of M <= 0.5, the distances and the

dip angles are similar. This is because one end of the detachment fault roots at the same

places along the ridge axis (intersection between the center dike and the brittle-ductile

transition), and for the other end, the moving rate of the termination has a maximum value

that is restricted by the far field extension rate Vx. Thus, the bending rates of the detach-

ment faults are similar among the three slices of M <= 0.5.

One thing needs to be noted is that the trough at the higher M side corresponds to the

terminations but detached from the terminations at the low M side (M < 0.5) as shown in

Figure 14.
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Figure 14: The second invariant of strain rates plotted on the reference model’s vertical
cross sections along the ridge at 107.5 kyr. Terminations and breakaways are marked by
black and red arrows.

3.2.2 Geometry of trough

The depressed narrow region that developes in the median valley is termed “trough”. The

reference model showed that its shape in the bird’s eye view evolves from a straight line

parallel to the ridge axis to a line oblique to the ridge axis (Figure 9.a-d). Initially, the

trough along the ridge corresponds to the termination. However, at the lower M side (M <

0.5), as the normal fault rotates to a lower dip, the trough is no longer coincident with the

fault termination and is moving slowly to the left because the hanging wall is pulled by

the conjugate plate. However, the trough on the higher M side (M > 0.5) is pushed away

from the ridge axis [Tucholke et al., 2008]. But since the trough cannot bypass the termi-

nation, the trough at M = 0.8 is restricted closer to the ridge axis. Together it generates the

curved shape of the trough (Figure 9.d).
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3.2.3 Inward fault jump

The inward fault jump (e.g., Fig. 8.f) occurs in most of the models when the energy for

maintaining an old fault becomes larger than breaking a new one near the ridge axis. As

shown in Figure 14, at the region with M > 0.5, the existing normal fault is pushed away

from the ridge-axis due to robust diking (M > 0.5). As it moves away from the ridge axis,

the frictional energy for the fault, the bending energy for the footwall as well as the neg-

ative work done by gravity that resists the exhumation of the footwall increase [Lavier

et al., 2000, Olive et al., 2014]. The initial detachment fault remains active until the sum

of the negative works reaches an upper limit that breaking a new fault near the ridge axis

needs less work than to maintain the initial one, the initial detachment fault at the higher

M side is then substituted by the inward jumping fault that cuts through the previous

hanging wall. As the fault evolves, it connects to the initial detachment at the lower M

side (M < 0.5) by a transfer fault and generates a curved termination along the ridge. Un-

like fault alternation described below, the inward fault jump occurs on the same side of

the ridge axis with its along-axis extent corresponding to the M > 0.5 region.

3.2.4 Fault alternation

Fault alternation is the behavior that normal faults alternatively show up on each side

of the ridge axis when magma supply is robust enough, as shown in M88ConT2 (Fig-

ure 13). The normal fault first evolves on the left-hand side of the ridge axis and pro-

duces an abyssal hill parallel to the ridge axis. By 480 kyr, another normal fault evolves

on the other side of the ridge axis and replaces the first one. Note that among the 15 mod-

els (Table 1), only three produce fault alternation. They are M88ConT2, M58SinT2 and

M58SqrtT2. Fault alternates only when weakening rate is low (type 2 weakening) and the

average integration of M along the ridge is large enough. Analysis on when and why fault

alternates is given in the Discussion section.
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3.2.5 Mass wasting

Mass wasting occurs on the exposed surface of a low-angle normal fault. When the weak

fault zone becomes gravitationally unstable and is decoupled from the spreading plate

as well as the underlying material, the detached layer flows towards the lower ridge axis

and the lower M side driven by gravity with a velocity hundreds of times faster than the

half spreading rate (Figure 15; Figure 16.b,e (first row))). As the top layer of the hanging

wall flows down the topography slope, obvious topography drop is observed in 2.5 kyr

(Figure 16.b) versus c); d) versus e) (topography)).
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 Strain 162.5 kyr
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Figure 15: Velocity of the mass wasting hanging wall. Magnitudes of the velocity are
shown by the colors of the arrow heads. Plastic strain is plotted with opacity linearly
proportional to its value.

Mass wasting is triggered by several factors. First, when the tip of the weak fault in-

terface moves away from the ridge axis with the spreading plate and is intersected by a

pre-exisitng shear stress σxy (Figure 17), the extra shear stress cuts the tip of the weak

fault interface and leads to the decoupling between the breakaway and the upper layer of

the hanging wall of the detachment fault. Second, during the roll over of the hanging wall

at the breakaway, tensional stress (σxx > 0) promotes the deviatoric stress for generating

small scale high angle normal faults cutting the detachment fault surface [Tucholke et al.,

1998] (Figure 40.c,d) and in this case the tip of the weak layer. In addition, along ridge
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coupling tends to resist the increase in along ridge offset of breakway which is generated

by along ridge varying slip rates of the faults. As Figure 18 shows, the dextral sense shear

stresses (red σxz) beneath the top weak layer tends to rotate the upper layer and assists in

triggering the decoupling process.

Figure 16: Plastic strain, topography and stresses evolution for M28SqrtT1.

3.2.6 Hourglass-shaped median valley

All the models with M variation develop an hourglass-shaped median valley although

the geometry of the median valley changes with time and with the functional forms and

ranges of M variation. A median valley of the M28Sqrt model initially has a uniform

width along the ridge but is deeper on the lower M side where normal faults first form

(Figure 19.a). By ∼100 kyr, the fault on right hand side of the ridge axis does not prop-
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Figure 17: The weak detachment fault tip reaches the pre-existing shear stress. Plastic
strain is plotted with opacity linearly proportional to its value.

Figure 18: Along ridge axis σxz (bird’s-eye view of three layers of model domain) (posi-
tive(red) means clockwise). Plastic strain is plotted with opacity linearly proportional to
its value.

agate to the higher M side of the ridge and becomes inactive (Figure 19.b). It produces a

depressed topography curve following the inactive fault trace, which is further away from

the ridge axis at the lower M side but closer to ridge axis at the higher M side. On the

other side of the ridge axis, as the active fault rotates to a lower dip angle, breakaways at

the lower M side move further away from the ridge axis than the breakaways at the higher

M side. This along-ridge variation in the location of the breakaways act as another bound-

ary of the hourglass on the left.
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Figure 19: Bird’s-eye view of the evolution of the hourglass-shaped median valley. It is
generated by attaching the topography of the M28SqrtT1 model to its mirror image by
assumming symmetrical M variation (0.2 to 0.8 to 0.2).

By ∼170 kyr (Figure 19.c), the hourglass-shaped median valley continues to widen

and deepen. Since the area of the cross section along the ridge inside the hourglass-shaped

median valley is approximately inversely proportional to the local M values, the shape of

the hourglass varies with different ranges and functional forms of M variations.

In addition, the further depression inside the median valley is mostly due to the elastic

deformation from crustal extension. As shown in Figure 20, the σxx in the median val-

ley is higher because the brittle crust is thinner, when same amount of force propagates

from far field extension to the median valley, the stress increases. This increased σxx is re-

sponsible for the further depression and extension of the median valley on the side of the

ridge axis with no active faulting (Figure 19.d). For the median valley on the other side of

the ridge axis, mass wasting between the breakaways and the ridge axis results in further

lowering of topography (Figure 16.d versus e (topography)).

Figure 20: Higher σxx shows inside the median valley on the positive x-axis direction of
the ridge axis.
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3.2.7 Corrugations and mullion structures

Both corrugations and mullion structures are linear structures parallel to the spreading

direction. As shown in Figure 8.f, at the M < 0.5 area on top of the OCC surface, corru-

gations show a uniform wavelength of ∼2 km with hundreds of meters in amplitude. At

the higher M side of the ridge (Figure 8.g), a mullion structure with a wavelength of ∼7

km shows up on the surface of the OCC. In spite of morphological similarity, corrugations

and mullion structures have different formation mechanisms.

Corrugations

The corrugation starts at the breakaway as a response to tensile stress in the z-axis di-

rection. As shown in Figure 21, when the plastic strain reaches or excedes 0.1 (red color),

on the basis of type 1 weakening, the cohesion decreases to 4 MPa. With a 30 ◦ friction

angle, tensile failure is declared when the σzz reaches ∼7 MPa (yellow color).

Figure 21: Bird’s-eye view of the evolution of the corrugations. Color scales for the
topography is the same as Figure 8.

The tensile stress is generated by the asynchronous faulting along the ridge. Faulting

initiates earlier at the lower M side of the ridge. As the fault offsets more on the lower M

side than on the higher M side, the footwall of the fault rotates and get uplifted more on

the lower M side. This relative displacement between the footwalls along the ridge gener-
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ates the isochron-parallel tensional stress σzz. Since σzz follows along the moving tip of

the plastic strain, the plastic srain together with σzz generate tensile failure that propagates

away from the ridge axis and thus produces the linear corrugations that are parallel to the

spreading velocity. Detailed analysis along with simpler model experiments are given in

the “Discussion” section.

Mullion structures

Mullion structures observed in the models are formed by the along-ridge variation in

the location of the termination due to the evolution of faulting. They usually appear where

the termination is closer to the ridge axis. The shape of the footwall follows the trace of

the termination as it is exhumed to the surface. Where the termination is bent inward to

the ridge axis, an “initial dome” (Figure 22.a) is produced once the footwall is exhumed

to the seafloor. The wavelength of the mullion structure is determined by the shape of the

termination. If the pattern of the termination lasts for a long time and the footwall of the

detachment fault keeps being exhumed to the surface following the trace of the detach-

ment fault termination, a mullion structure is produced (Figure 22.b).
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Figure 22: Evolution of mullion structures.
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3.3 Effects of the functional forms of M variation

3.3.1 M28T1

Major differences among M28LinT1, M28SinT1 and M28SqrtT1 lie in the model behav-

iors in terms of the inward fault jump, the mass wasting and the hourglass-shaped median

valley. None of the three models show fault alternation. Figure 23 shows M variations of

three kinds of functional forms.
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Figure 23: Three functional forms of M variation. M begins to exceed the M = 0.5 black
line at Z=10 km, 7 km, 5 km for M28LinT1, M28SinT1 and M28SqrtT1 respectively.

Inward fault jump

Only the linear (M28LinT1) and sinusoidal (M28SinT1) models have inward fault

jump. Sqaure root model (M28Sqrt) does not have inward fault jump because during mass

wasting, termination of the detachment fault retreats backward toward the ridge axis and

the detachment fault is maintained near the ridge axis.
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Comparing linear and sinusoidal models, timing and dimension of the inward jumping

faults are different. For the linear functional form, the inward fault jump at the higher M

side starts accommodating most of the extension at ∼900 kyr and replaces the initial de-

tachment fault (Figure 24, Figure 8.f). It nucleates from the ridge center where M = 0.5

and then propagates to the M = 0.8 end with a length of ∼11 km. For the sinusoidal func-

tional form, the inward fault jump takes the place of the initial detachment fault earlier at

∼550 kyr with a length of 14 km (Figure 24).
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M28LinT1

900kyr

M28SinT1

14 km
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0.4

Plastic

Strain

X

Z

Figure 24: Bird’s-eye view for comparing the length and timing of inward fault jump.

The timing difference between the linear and sinusoidal models is because M28SinT1

consistently has a higher M value than the M28LinT1 (Figure 23), which results in the

initial detachment fault at the higher M side (M > 0.5) of M28SinT1 being pushed off

axis faster than M28LinT1 and thus forming an earlier inward fault jump. The length dif-

ference is because M28SinT1 has a greater length along the ridge axis of M ≥ 0.5 (Fig-

ure 23).

Mass wasting

Mass wasting only happens in the M28SqrtT1 model. Qualitatively, it is because

M28Sqrt has a much higher value of ∂M
∂Z

at the lower M side (Figure 25), which implies
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a larger along ridge shear stress σxz as well as a larger difference in σxy along the ridge

that result in the decoupling between the higher and lower M sides hanging walls.
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Figure 25: ∂M/∂Z comparision.

Hourglass-shaped median valley

As shown in Figure 26, differences among the three models are identified. At 160

kyr, median valley for M28SinT1 has the smallest cross-sectional (x-y) area at the higher

M side (center of the ridge segment). Whereas at the lower M side, M28SqrtT1 has the

smallest cross section. This is because the cross section inside the median valley is in-

versely proportional to the local M value along the ridge. Moreover, the breakaways at the

lower M sides for M28LinT1 and M28SinT1 bend to parallel to the ridge axis while the

breakaway for M28SqrtT1 moves further away from the ridge axis. In addition, M28SinT1

has a trough inside the median valley with the highest curvature. At 500 kyr, M28SinT1

has the narrowest median valley at the higher M side and the high topography zone on

the left-hand side of the ridge axis is the widest in the z-axis direction. Integrating the

topography below initial elevation (0 km) inside the median valleys of the three models,
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M28Sin has the lowest value of integration because it has the largest amount of magma

supply of M > 0.5 (Figure 23). In addition, the termination of the detachment fault of

M28SqrtT1 has the highest curvature at the lower M sides. All these model behaviors cor-

respond to the M variation (Figure 23).
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Figure 26: Bird’s-eye view of the topograpy. (Original and mirror images are put together
assumming symmetrical M variation.)

3.3.2 M58T2

Among M58LinT2, M58SinT2 and M58SqrtT2, the major difference lies in “fault alter-

nation”. Except for the constant M model M88ContT2, among all the models, only the

models with type 2 weakening and M ranges from 0.5 to 0.8 (M58) have fault alternation.

However, M58LinT2 does not produces alternating fault during the 1.1 Myr model time.

Instead, one detachment fault lasts until ∼300 kyr when the inward fault jump happens at

the higher M side (0.65 < M < 0.8) and replaces the initial detachment fault. This pro-

vides a lower limit of M̄ that prevents fault alternation and alows a long-lived detachment

fault to produce an OCC. As shown in Table 3, the lower limit is 0.6425 for M58LinT2.

Detailed analysis of the fault alternation is given in “Discussion”.
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Table 3: Average M values (M̄ ) of the models. (The value is calculated by integrating M
along the ridge axis and divided by the length (20 km) of the model domain in z-axis.)

Function
M range

M28 M57 M58

Linear 0.4850 0.5950 0.6425
Sinusoidal 0.5668 0.6223 0.6834
Square root 0.5837 0.6279 0.6918

3.4 Effects of the weakening rate

3.4.1 M57SinT1 versus M57SinT2

Initially, both models develop normal faults on both sides of the ridge axis at the lower

M side. In the model with the faster weakening rate (M57SinT1), faults propagate toward

the higher M side and cut through the whole crust by 25 kyr but this process completes 25

kyr later in the model with slower weakening rate (M57SinT2). By ∼310 kyr, the inward

fault jump appears at the higher M side (M > 0.5908) of M57SinT2 whereas at M <=

0.5908, the initial fault remains active (Figure 27.c and d). However, when the weakening

is fast (M57SinT1), mass wasting happens at ∼260 kyr and helps to maintain a relatively

higher angle fault with a termination closer to the ridge axis. The initial fault remains and

no inward fault jump forms (Figure 27.a and b). In addition, the width of median valley

at the lower M side is wider for M57SinT2 than M57SinT1 (Figure 27.c, d versus a, b)

because slower weakening (type 2) alows a more distributed tensional stress σxx rather

than fast weakening that once a fault establishes, larger amount of the tensional stress σxx

is released at the fault. The amplitude of the corrugations of M57SinT1 is larger than that

of slower weakening M57SinT2. This is because faster weakening rate allows a faster

decrease in the cohesion. As the cohesion reaches its minimum of 4 MPa ealier when the

plastic strain accummulates to 0.1, tensile failure is easy to happen in the isochron parallel

direction and produces the corrugations.
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Figure 27: Bird’s-eye view of M57SinT2 versus M57SinT1 (Table 1).

M57SinT1

For M57SinT1, by 400 kyr (Figure 28.a), two antithetic faults form at the lower M

side (0.5 < M < 0.6521) accommodating part of the plate extension. This makes the ter-

mination at the lower M side retreat backward to the ridge axis. By 530 kyr, the termina-

tion at the center of the ridge segment (M = 0.6299∼0.6618) moves further away from

the ridge axis (Figure 28.b). This curved termination leads to a curved topography align-

ing with it (white curve in the second row). By 740 kyr, another antithetic fault forms

at the lower M side (Figure 28.c). It doesn’t take the place of initial fault and disappear

soon, however, it again releases tensional stress and helps maintain a closer to ridge axis

termination at the lower M side. By 1000 kyr (Figure 28.d), an Atlantiss Massif shape

OCC is produced (lower M side has a larger dome and higher M side has a smaller dome

due to the along ridge termination evolution. Corrugations with wavelength varying from

hundreds meters to kilometers are also produced.

M57SinT2

For M57SinT2, instead of maintaining a detachment fault like M57SinT1, it produces

inward fault jump at the higher M side. By 325 kyr (Figure 29.a), an inward fault jump

happens and takes the place of the initial detachment fault at the higher M side. Between

447.5 kyr (Figure 29.b) and 450 kyr (Figure 29.c), a small scale mass wasting happens
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Figure 28: Bird’s-eye view of faulting and stresses evolution of M57SinT1.

and the termination recedes backward to the ridge axis. By 600 kyr, the termination at the

higher M side extends further (Figure 29.d). By 885 kyr, an inward fault jump happens at

the higher M side (0.62 < M < 0.7) (Figure 29.e). The width of the median valley at the

lower M side keeps increasing due to the distributed σxx (Figure 29.a∼d).

Figure 29: Bird’s-eye view of faulting and stresses evolution of M57SinT2.
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3.4.2 M58SinT1 versus M58SinT2

A major difference between M58SinT1 and M58SinT2 is that only M58SinT2 has fault

alternation.

M58SinT1

During the 1 Myr extension of the model M58SinT1, 10 phases of the evolution of

faulting are identified (Figure 30.a∼j). Antithetic faults, inward fault jumps, mass wasting

happens with a rider block, corrugations and mullion structures produced.

Figure 30: Bird’s-eye view of faulting and stresses evolution of M58SinT1.
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By 240 kyr (Figure 30.a), due to fast weakening (type 1), cohesion along the termina-

tion is low. Stress σzz takes the advantage and generates ∼2 km wavelength corrugations

parallel to the spreading direction as the termination moves further away from the ridge

axis. Between 240 kyr (Figure 30.a) and 245 kyr (Figure 30.b), a mass wasting happens

at the lower M side. The termination recedes toward the ridge axis during the mass wast-

ing. By 345 kyr (Figure 30.c), an antithetic fault forms at the lower M side (0.5 < M <

0.5469) with an inward fault jump happening at ridge segment with M ∈ (0.5927, 0.6763)

(Figure 31). 45 kyr later, the two weak zones break through and connect to each other and

take the place of the initial detachment fault at the lower M side (Figure 30.d). Due to this

inward fault jump, a sinistral σxz zone (blue area in the σxz panel) forms and is bounded

by the termination of the inward fault jump near the ridge axis at the lower M side and the

termination of the initial detachment fault at the higher M side. By 530 kyr (Figure 30.e),

the termination of the inward fault jump at the lower M side evolves to a curve with its

center moving further away from the ridge axis because the inward fault jump initiates at

the center and the new fault starts slipping earlier. However, the lower M side of the curve

remains closer to the ridge axis due to the antithetic fault and the other end of the curve

is also closer to the ridge axis because the fault initiates later. This curved termination at

the lower M side also connects to the initial detachment fault at the higher M side which

is further away from the ridge axis. Together, the curved termination is like a mirror re-

flected letter “S”. This flipped “S” shape termination is also shown in topography. As the

curved termination at the higher M side lasts for ∼300 kyr since ∼390 kyr, following the

shape, a ∼10 km in wavelength and ∼7 km in along spreading direcion mullion structure

is formed (Figure 32). By ∼680 kyr, an inward fault jump hapens at the higher M side

(0.7853 < M < 0.7991). It perturbs the curved shape termination and ceases the further

exhumation of the mullion structure. This inward fault jump also produces a rider block

that covers the inactive detachment fault and moves off axis following the exhuming foot-

wall of the inward jumped fault.
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Figure 31: Plastic strain for M58SinT1 at 350 kyr.
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Figure 32: Evolution of faulting and morphologies of M58SinT1.

Between 530 kyr (Figure 30.e) and 550 kyr (Figure 30.f), another mass wasting hap-

pens at the lower M side (0.5 < M < 0.5469) where a slump block with a surface area

of ∼9 km2 flows down the topography slope into the trough. Termination recedes back-

ward to the ridge axis. By 580 kyr, termination at the lower M side moves further away

from the ridge axis due to less magma supply. Between 580 kyr and 850 kyr, due to two

antithetic faults at the lower M side (M ∈ (0.5, 0.5469) ∪ (0.5927, 0.6567)), the termina-

tion at the lower M side recedes and the previous mirror reflected “S” shape termination

evolves to a half circle curve (Figure 30.h). The shape is also reflected in the topography.

By 960 kyr (Figure 30.i)), at the ridge segment with M ∈ (0.6763, 0.7121), another in-

ward fault jump replaces the detachment fault away from the ridge axis and retreats the

termination backward to the ridge axis forming two half circle curves with wavelengths

of around half of the model domain in z-axis. A large dextral shear zone (red region ∼40
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◦ oblique to ridge axis) is seen in the σxz panel. The shear stress σxz is produced by the

inward fault jump at the center of the ridge segment that previous hanging wall changes

to the footwall of the inward jumped fault and generates an offset between the old hang-

ingwall at the lower M end and the new footwall of the inward jumped fault. By 1000 kyr,

due to the along ridge coupling, the inward fault jump propogates to the end of the high

M side (Figure 30.j).

M58SinT2

As shown in Figure 33, a fault initiates on the left-hand side of the ridge axis (Fig-

ure 33.a). The breakaway at the lower M side moves away from the ridge axis further than

that of the higher M side. It takes longer time of ∼100 kyr to form a localized fault plane

through the whole ridge segment due to the slower rate of weakening (type 2). By 215 kyr

(Figure 33.b), fault alternates to the conjugate plate and gradually replaces the initial one.

Corrugations are only produced at the lower M side (M ∈ (0.5, 0.6763)). By 330 kyr, fault

alternates again. Between 490 kyr (Figure 33.d) and 495 kyr (Figure 33.e), a mass wast-

ing happens with termination receding. A slump block with an area of ∼16 km2 flows

down the topography slope into the trough. With fault alternation, the shape of the median

valley is no longer a typical hourglass. However, at the lower M side, the median valley

is still wider and deeper. Smaller wavelength abyssal hills are produced at the higher M

side.

3.4.3 M58SqrtT1 versus M58SqrtT2

The major difference between M58SqrtT1 and M58SqrtT2 is also whether the normal

fault alternates or not.

M58SqrtT1

By 260 kyr, breakaway at M = 0.5 moves ∼5 km further away from the ridge axis

than that at the higher M end (Figure 34.a). Corrugations with a wavelength of ∼2 km are

37



Figure 33: Bird’s-eye view of faulting and stresses evolution of M58SinT2.

produced along the ridge. By 370 kyr (Figure 34.b), due to larger value of ∂M
∂Z

at the lower

M side, a vertical tensile failure takes place at M ∈ (0.5, 0.5949). Two parallel sinistral

shear stress zones (blue) are seen in the σxz panel. By 400 kyr (Figure 34.c), an inward

fault jump happens where M ∈ (0.5949, 0.7121) and it propagates to the end of the higher

M side and replaces the initial detachment fault at the higher M side by 460 kyr (Fig-

ure 34.d). By 590 kyr (Figure 34.e), an inward fault jump happens at the lower M side

(M < 0.5949) and connect with the normal fault at the higher M side replacing the initial

detachment fault. An ∼18 km2 triangular shape (bird’s-eye view) rider block is produced

at the lower M side. Termination at the center of the ridge segment moves the furthest

away from the ridge axis. This is because the previous inward fault jump first initiates

there and starts slipping earlier. It is also because the value of M is lower at the segment

center than the higher M end. By 660 kyr (Figure 34.f), as the previous inward jumped

fault at the higher M side evolves, another dome is produced. There is a hint of high angle

normal fault at the region with M < 0.5949 on the conjugate plate. But it doesn’t develop.

By 730 kyr (Figure 34.g, the termination evolves to a “half circle” and the shape is also

seen in the topography. By 780 kyr (Figure 34.h), another inward fault jump appears at

the ridge segment with M ∈ (0.6342, 0.7121) and produced a curved termination with
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a wavelenth of ∼10 km. It has the potential to create a large wavelength mullion struc-

ture. Meanwhile, at the lower M side (M < 0.5949) near the ridge axis, an antithetic fault

forms and propagates toward the higher M side (Figure 34.i). It triggers another inward

fault jump at the lower M side and produces another rider block. The inward jumped fault

later connects with the detachment fault at the higher M side (Figure 34.j). In addition, a

tensile failure shows its hint at the lower M side (M < 0.6342) of the conjugate plate.

Figure 34: Bird’s-eye view of faulting and stresses evolution of M58SqrtT1.
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M58SqrtT2

By 195 kyr (Figure 35.a), breakaway at the lower M side moves further away from the

ridge axis. Three corrugations begin to show up due to isochron-parallel tensile failure.

Median valley on the conjugate plate is wider at the lower M side because less magma

supply results in larger amount of elastic depression. Between 195 kyr (Figure 35.a) and

200 kyr (Figure 35.b), mass wasting happens along the ridge and is followed by the termi-

nation retreat. By 270 kyr fault alternates (Figure 35.c). The shape of the alternated fault

follows the curved shape shear σxy zone (red) as seen since ∼195 kyr on the left-hand

side of the ridge axis. By 330 kyr (Figure 35.d), at the lower M side, an inward fault jump

happens and takes the place of the old fault further away from the ridge axis. By 460 kyr

(Figure 35.e), fault alternates again to the right hand side of the ridge axis.

Figure 35: Faulting and stresses evolution for M58SqrtT2.

3.5 Effects of the range of M variation

Generally, M57 and M58 models create a median valley much narrower and shallower

than that of M28 models.
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3.5.1 SinT1

M57SinT1 versus M58SinT1

For description of M57SinT1 evolution with respect to time, please refer to Section 3.4.1

and Figure 28. For description of M58SinT1 evolution with respect to time, please refer

to Section 3.4.2 and Figure 30. Comparing M57SinT1 and M58SinT1, the major differ-

ence is that the faulting pattern evolution for M58SinT1 is much more dynamic with a

higher frequency of inward fault jumps, mass wasting and connection of the offsetted

fault zones. For M58SinT1, the inward fault jumps and antithetic faults usually replace

the old ones. However, for M57SinT1, diking is not robust enough to create big enough

stress perturbation along the ridge axis for inward fault jumps or antithetic faults to take

the place of the original one. At the lower M side, antithetic faults only help to accommo-

date tensional stress which assists in maintaining a termination near the ridge axis while

the termination at the higher M side gradually moves off axis. This produces an OCC

with larger dome at the lower M side than higher M side which is opposite to the shape

of the OCC produced by M58SinT1.

M28SinT1

As shown in Figure 36, faulting evolution is much less dynamic than that of M58SinT1.

One detachment fault keeps active on the right hand side of the ridge axis. Only inward

fault jump happens ∼540 kyr (Figure 36.d). By ∼100 kyr (Figure 36.a), breakaway at

the lower M side moves ∼4 km further away from ridge axis than the higher M side. By

250 kyr (Figure 36.b), ∼4 corrugations begin to evolve at the lower M side (M ∈ (0.2,

0.5135)). By 420 kyr, at the higher M side, a hint of inward fault jump begins to show up.

It delvelops into an inward fault jump by 540 kyr (Figure 36.d) and propagates toward

higher M side. At the lower M side (M ∈ (0.2, 0.2939)), a tensile failure takes up part of

the plate extension and helps maintain a closer to ridge axis termination than the moving
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termination at the region with M ∈ (0.4724, 0.6562) (Figure 36.e). The curved toward

ridge axis termination at the lower M side produces a mullion structure.

Figure 36: M28SinT1 (Table 1) faulting and stresses evolution with respect to time.

3.5.2 M57SinT2 versus M58SinT2

For description of M57SinT2 evolution with respect to time, please refer to Section 3.4.1

and Figure 29. For description of M58SinT1 evolution with respect to time, please refer

to Section 3.4.2 and Figure 33. A major difference is that M57SinT2 has no fault alterna-

tion while M58SinT2 has.

3.5.3 M28LinT1 versus M57LinT1

For description of M28LinT1 evolution with respect to time, please refer to Section 3.1.

M57LinT1

As shown in Figure 37, between 160 kyr (Figure 37.a) and 162.5 kyr (Figure 37.b), a

mass wasting happens. The corrugations have a relatively high amplitude. Due to less M

variation (0.2), the along ridge offset in breakaways is smaller. The median valley almost
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has a constant width along the ridge. By 350 kyr (Figure 37.c), a tensile failure happens

at the region with M ∈ (0.5, 0.61) and generates a linear topography low. Another shorter

tensile failure at the higher M side (M > 0.64) helps maintain a high angle normal fault

near the ridge axis. By 430 kyr (Figure 37.d), the tensile failure at the lower M side (M

< 0.52) is responsible for the retreat of the termination. Whereas at M ∈ (0.54, 0.59), the

termination moves further away from the ridge axis. This curved termination results in a

“dog bone” shape topography as seen at 640 kyr (Figure 37.e) and is also responsible for

the large sinistral shear (blue) stress σxz. By 705 kyr (Figure 37.f), an inward fault jump

happens and replaces the original detachment fault at the higher M side with a length of

∼15 km. This inward jumped fault connects with the detachment fault at the lower M

side. The new “L” shape termination is responsible for the topography seen at 1000 kyr

(Figure 37.h). The termination at the higher M side soon catches up the termination at the

lower M side due to the presence of a tensile failure.
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Figure 37: M57LinT1 (Table 1) faulting and stresses evolution with respect to time.
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4 Discussion

4.1 Overview of model behaviors

Model results show systematic changes with the average M value (M̄ ), which is the inte-

gration of M along the ridge divided by the ridge length. M̄ values of all the models are

listed in Table 3. M̄M58 > M̄M57 > M̄M28 and within each M range, M̄ with sqaure root

functional form is higher than that with sinusoidal form, which in turn is higher than the

linear form.

To facilitate the challenging task of describing the complicated behavior of each model

as well as comparing different models, I visualize the model behavior as shown in Fig. 38.

Each plot has the amount of extension in km as the horizontal axis and M values as the

vertical axis. The plot can succinctly show what structure appears, how long it takes to be

created or remains active, and where it is created along the ridge.

For instance, from the plot for M57SinT1 (M̄ = 0.6223) in Fig. 38, one can see that

an antithetic fault first shows up after about 17 km of extension on the low M end, a mass

wasting event occurs after about 13 km of extension and the inward fault jump is absent in

this model. Similarly, the plot for the M57SqrtT1 model (M̄ = 0.6279) clearly shows that

this model experiences two inward fault jumps.

Models with type 1 weakening, on the left column of Figure 38, show more com-

plex and dynamic behavior as M̄ increases. In other words, more of the main structural

characteristics are created and they tend to have a higher recurrence frequency as M̄ in-

creases. For instance, the inward fault jump occurs earlier and lasts a shorter period of

time in M28SinT1 than in M28LinT1 due to a higher M̄ of M28SinT1. Furthermore,

among three models with M28T1, mass wasting occurs only in M28SqrtT1, the model

with the highest M̄ among these M28T1 models. The trend of greater complexity for

higher M̄ continues in the group of M57T1 models. Corrugations are created earlier

along the whole 20 km ridge segment than in the M28-T1 models. Unlike the M28T1
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Figure 38: Initiation and duration of main structural features.

group, all three models in the M57-T1 group have mass wasting. The two M58 models

have 3 or 4 inward fault jumps but the M57 models have at most two of them. Also, cor-

rugations are created earlier in the M57 models than in the M58 ones, which suggests that

corrugation favors a specific range of ∂M
∂Z

, not necessarily higher M̄ . Between M58SinT1

(M̄ = 0.6834) and M58SqrtT1 (M̄ = 0.6918), the major difference is M58SqrtT1 has two

times of inward fault jumps at the lower M side because M values are higher at the lower

M side.
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When comparing models with different weakening rates, the most obvious difference

is that only type 2 models generate alternating faults. The models that exhibit the fault

alternation do not create mullion structures because the pattern of termination can not last

long enough to produce the mullion structure. Also, they have neither tensile failure nor

antithetic fault.

M58LinT2 (M̄ = 0.6425) does not show fault alternation, which suggests that not

only the range of M (M58) but also the average M value along the ridge M̄ are responsi-

ble for fault alternation. This provides an upper limit of M̄ = 0.6425 in our 3D models

for producing long lasting detachment faults that can generate OCCs. Comparing M57T2

and M57T1 models show that M57T2 models generally have earlier inward fault jumps

but later corrugations. For the model with constant M = 0.8 along the ridge axis, the in-

ward fault jump and fault alternations have a period of ∼10 km of extension which is con-

sistent with field observations. Corrugation, mullion structures, mass wasting, antithetic

fault and tensile failure are not produced in constant M model M88ConT2 and it implies

that varying M is necessary for producing those features.

In addition, the upper limit of M̄ = 0.6425 for allowing a long lasting detachment

fault to produce an OCC in our model is consistent with the results from a near-bottom

sidescan bathymetric profiler survey and sampling study of the Mid-Atlantic Ridge near

13 ◦N [MacLeod et al., 2009]. As shown in Figrure 39, the average M value M̄ = 0.63 ±

0.05 for the pink area where OCCs are present whereas when there is no OCC, M̄ = 0.73

± 0.03.

Under similar physical conditions of our model setup (e.g., thermal structure, rheol-

ogy relationship, spreading velocity, weakening rate), the upper limit of M̄ = 0.6425

predicts a boundary value between two observed morphological end members for slow

spreading ridges: 1) long wavelength OCCs generated by a detachment fault; 2) short

wavelength abyssal hills result from symmetrical spreading of alternating high angle nor-

mal faults. Although the number of M̄ = 0.6425 is highly consistent with natural obser-
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Figure 39: Along-axis variations in total accumulated tectonic heave T in the past 1.86
Ma (since chron C2n), and consequent inferred magmatic component M (= 1 − T) as a
proportion of total plate separation (blue line). Pink shaded areas delineate loci of the
active or recently active OCCs. The relative contributions of tectonic strain from the west-
ern and eastern flanks of the axis that give rise to the total heave T are shown by red and
green lines respectively. Adapted from [MacLeod et al., 2009].

vation (e.g., [MacLeod et al., 2009]), we still need more work for a comprehensive result

because model parameter such as viscosity of the underlying asthenosphere also con-

tributes to whether fault alternates. For example, [Allken et al., 2012] shows that higher

value of viscosity of the ductile asthenosphere leads to better coupling between crust and

mantle and promotes distributed muliple faulting rather than a focused long-lived detach-

ment fault.

Previous 2D studies suggest that OCCs are most likely to form when M = 0.3 ∼ 0.5

[Buck et al., 2005;Tucholke et al., 2008]. However, conflicts exist between model predic-

tion and observation in both the upper and lower limits. For the upper limit conflict that

OCCs are observed with M > 0.5, Olive et al. [2010] suggest an explanation from a 2D

model study that magma supplied in the ductile lower crust and upper mantle does not af-

fect the faulting pattern and allows OCCs to be created under excessive diking. However,
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our 3D model results provide an alternative explanation: due to the along ridge coupling

(i.e. torsion and shear), the region (M = 0.3 ∼ 0.5) along the ridge that promotes stable

spreading by detachment faulting helps maintain the normal fault outside the region along

the ridge. Once the detachment fault initiates along the whole ridge segment, it is very

hard to modify the faulting pattern especially for a faster weakening rate (type 1). Thus,

the detachemnt fault at the higher M side (M > 0.5) can still last for more than 20 km of

plates separation (Figure 38.M28LinT1) before the fault alternation or inward fault jump

ceases the exhuming process of the ultramafic mantle rocks. This along ridge coupling

can also explain the conflict at the lower limit end when OCC is produced with observed

M < 0.3 (e.g., Dick et al., 2008; Grimes et al., 2008; Baines et al., 2008). Our 3D result

suggests an extended range of M for OCCs formation than previous 2D studies (M = 0.3

∼ 0.5) [Buck et al., 2005;Tucholke et al., 2008].

4.2 Comparing model results with natural observations

4.2.1 Inward fault jump

The term “inward fault jump” is first suggested in a study of geological and geophysical

data from the Mid-Atlantic Ridge [Tucholke et al., 1998]. It is the end phase of a general

evolution of an OCC as is illustrated in Figure 40. In the begining of a long amagmatic

phase (Figure 40.a∼c) of seafloor spreading, a high angle normal fault cuts through the

brittle lithosphere and roots in the brittle-ductile transition (BDT) (Figure 40.a). When

the fault keeps slipping, the breakaway moves off axis and the fault begin to rotate to a

lower dip angle (Figure 40.b). Then, the exposed fault surface roll over and as the detach-

ment fault keeps exhuming lower crust and upper mantle rocks, it generates a dome shape

megamullion (OCC). The high angle normal faults cutting the detachment fault surface

is probably caused by the bending stresses during footwall roll over (Figure 40.c). Then,

when magma supply at the ridge center increases and pushes the detachment fault away

from the ridge axis, the OCC formation is terminated by the new fault near the ridge axis
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which is termed as the “inward fault jump”. As shown in the figure, initially, the footwall

of this new fault is mostly composed of crust material like basalt, however, if this new

fault can last a long period of time, it can also exhume lower ultramafic material.

Figure 40: Schematic development of a megamullion. No vertical exaggeration. (a)∼(c)
shows the detachment fault evolution during amagmatic phase. (d) Increased magma sup-
ply pushed the detachment fault away from ridge axis and forms a new normal fault near
the ridge axis (“inward fault jump”). Adapted from [Tucholke et al., 1998].

In our model, most of the inward jumping faults last less than 5 km of plates exten-

sion before the mantle material can be exhumed to the seafloor. However, the M28LinT1

model produces an inward fault jump lasts for ∼15 km of extension (Figure 38.M28LinT1)

and produces a dome-shaped OCC ajacent to the initial one further way from the ridge
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axis (Figure 8.h). This behavior might explain the brother Abel and Cain domes of the

Kane megamullion at 23 ◦N MAR. As shown in Figure 41, our model behavior is consis-

tent with the observation in terms of the breakaway and the wavelength of the domes as-

suming M decreases form south to north along the ridge axis. First of all, the breakway of

the detachment fault is further away from the ridge axis at the northern than the sourthern

end. Second, the Abel and Cain domes are larger than the Adam and Eve domes because

the inward fault jump lasts longer where M is relatively lower.

Figure 41: Bathymetric map and simplified tectonic interpretation of Kane Megamullion.
Contour interval is 100 m. Pie diagrams show lithologic proportions by weight in dredge
and dive collections. Detachemtn fault breakaway and termination are marked as dashed
lines. Shaded regions indicate areas of possible off-axis volcanism. Adapted from [Dick
et al., 2008].
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A seismic study [Xu et al., 2009] showed that the Kane OCC is terminated at around

2.1 Myr ago when an eastward fault jump occured, i.e. when a new normal fault formed

in the rift valley and captured a segment of the basaltic hanging wall. The velocity struc-

ture from their P wave tomography study verifies that the hanging wall block that is east-

ern to the Cain dome has a lower velocity corresponding to basaltic rocks (Figure 42).

Figure 42: P wave isovelocity contours at 500 m below seafloor superimposed on
bathymetry and simplified tectonic interpretation. Adapted from [Xu et al., 2009].

4.2.2 Fault alternation

For slow- to intermediate-spreading ridges, the off-axis morphologies have two end mem-

bers. One is shorter wavelength abyssal hills that are relatively symmetrical across the

ridge axis. They are usually found closer to the ridge segment center (crossection A-A′
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in Figure 43). The other is the long wavelength asymmetrically spreading OCCs (crossec-

tion B-B′ in Figure 43). What is the mechanism for this distinct difference along the ridge?

The fault alternation behavior in our model provides a 3D perspective for answering the

question. When M̄ is higher than 0.6425 with slower weakening rate (type 2), short wave-

length abyssal hills are generated. For example, M88ConT2 produces abyssal hills with a

∼10 km wavelength due to fault alternation (Figure 38.M88ConT2; Figure 13). Note that

the wavelength of the abysall hills in our models is consistent with the nature observation

as marked in Figure 43. While when M̄ ≤ 0.6425, OCC is produced.

Figure 43: Bathymetry from 12.8∼14.2 ◦N Mid-Atlantic Ridge. Crossection A∼A′ and
B∼B′ are 5 times vertical exagerated. From GeoMapApp.
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The parameters that controls fault alternation have been proposed by Lavier et al.

[2000]. Lavier et al. [2000] focused on the trade-off between bending forces (∆Fb) as a

function of fault offset ∆X and force change due to strain weakening (∆Fw) that is also a

function of ∆X . They showed that the strength weakening on the existing fault combined

with bending force resists further offset of the fault plays a major role in determining the

stress state at regions other than the active fault. Their analysis explains how higher char-

acteristic fault slip (∆Xc) or slower strain weakening results in multiple faults rather than

only one fault. As ∆X increases on a fault at a spreading center, the change in bending

force ∆Fb increases and the strength at the fault interface decreases due to weakening

∆Fw (Figure 44). If the net force change ∆F = ∆Fb + ∆Fw is positive, it means that it

becomes harder to maintain the existing fault and stress begins to accummulate at other

areas which eventually break another fault. ∆Fb initially increases fast with respect to

∆X and then when the detachment fault surface roll over, ∆Fb reaches its peak value and

begins to decrease and then maintains a constant value. If the strain weakenging is fast

enough that the net effect force ∆F is always negative, then most of the stress will be re-

leased by the existing fault and thus no conjugate or multiple faults will be generated.

Our model results are consistent with this analysis in that only weakening (slower

weakening with higher ∆Xc) produces an alternating normal fault on the conjugate plate.

4.2.3 Mass wasting

The mass wasting behavior in M28SqrtT1 model produces a fault scarp of ∼1km in re-

lief, 40km in length along isochron-parallel direction (Figure 45). It forms when the de-

tachment fault rolls over and induces bending stressses that generate the high angle fault

which cuts the weak detachment fault surface and decouples the spreading breakaway

and the highly deformed fault hanging wall. The topography at 13 ◦N Mid-Atlantic Ridge

also has a fault scarp with very similar curved geometry with ∼1km in relief. However,

the 1 km relief might be relfecting the model resolution of 1 km so further investigation
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Figure 44: Trade-off between change in bending force ∆Fb and weakening in the fault
interface ∆Fw. H is the thickness of the brittle crust and γ is the size of initial weak per-
turbation and A defines the maximum bending force change. Adapted from [Lavier et al.,
2000]. (For more details, please refer to [Lavier et al., 2000])

is necessaray. In addition, a magnetic anomaly study of the region by [Smith et al., 2008]

reveals a perfect match at 13◦5′N between the bathymetry and the magnetization that the

suspected eastward moving block corresponds to the positive magnetic anomalies that is

detached eastward from the youngest isochron on the American plate side of the ridge

axis (Figure 46). It might imply that the block at 13◦5′N adjacent to the curved fault scarp

has a relative displacement toward the East and thus provides evidence for the mass wast-

ing behavior of the block.

4.2.4 Hourglass-shaped median valley

Due to the variation in diking along the ridge-axis, an hourglass-shaped median valley

is also produced in the model where the narrower center corresponds to the region with

higher magma supply (M=0.8). Hourglass-shaped median valleys are frequently observed

in nature along slow-to-intermediate spreading ridges like the Mid-Atlantic Ridges [Sempéré

et al., 1993]. From an analysis of the sea beam bathymetry along the MAR between 24 ◦

00 ′N and 30 ◦ 40 ′N [Sempéré et al., 1993], nine hourglass shape valleys are identified.
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Figure 45: Comparing bathymetry at 13◦N Mid-Atlantic Ridge to the mass wasting be-
havior of M28SqrtT1. The model topography is a mirror symetric flip according to the
dash line, it shows the case of M varies in a square root functional form from 0.2 to 0.8 to
0.2. The bathymetry image is generated by GeoMapApp [Ryan et al., 2009].

They share similar dimensional scale (∼40 km × ∼40 km) with our model. For example,

there is an hourglass around 22 ◦ 30 ′ that is 45 km long and 15 km wide (Figure 47). The

observed width and depth of the hourglass can be used for inferring which evolution stage

the rift valley is in. For instance, the one shown in Figure 47 corresponds to an early stage

of our model because it has a relatively symmetrical and narrow shape (Figure 19.b). In

addition, the relatively small variation in the valley’s width along the ridge is more corre-

sponding to M57 and M58 models than the M28 models.

4.2.5 Mullion structure

Mullion structures are frequently observed on the surface of OCCs. For instance, the

mullion structure on the surface of of the Cain dome has a wavelength of ∼3.5 km as

marked in Figure 48.B∼B′. The geometry and length scale of these mullion structures

bear significant visual similarity with those of our reference model, M28LinT1 (Fig-

ure 22). Model results indicate that the mullion structure mostly forms when the termi-

nation of the detachment fault has a curved shape that can last for a long period of time

and the spreading-parallel mullion structure is produced following the shape of the termi-

nation. Where the termination is curved toward the ridge axis corresponds to the larger
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Figure 46: Bathymetry and magnetization of 13∼15 ◦N MAR. Bold lines are ridge axes.
Lined up circles are identified isochrons. Adapted from [Smith et al., 2008].

Figure 47: Hourglass median valley at 22 ◦ 30 ′N MAR. Image is generated from GeoMa-
pApp.

and higher part of the mullion structure. As shown in Figure 41, the spatial distribution

of the mullion structure of the Cain dome is consistent with the termination that is curved

inward to the ridge axis.
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Figure 48: Bathymetry around the Kane OCC at 23 ◦N MAR. Image is generated from
GeoMapApp.

4.2.6 Corrugations

Corrugations are also produced in the models. For instance, the spreading-parallel cor-

rugations with wavelength of several kilometers are produced in the model M58SinT1

(Figure 49).

As decribed in the “Results” section, the corrugations are formed due to isochron-

parallel tensile failure which results from asynchronous faulting along the ridge. This

mechanism is further verified by simpler 3D models.

When seeds (elements with prescribed plastic strain of 0.5) are partially added along

the ridge segment for simulating the effects of asynchronous faulting where normal fault

initiates earlier at the region with initial seeds, corrugations are produced by the model

(Figure 50.a).
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Figure 49: Comparing bathymetry at 16 ◦N Mid-Atlantic Ridge to the corrugations of
M58SinT1 at 550 kyr.

However, when 10 km of sea water pressure is added on top of the seafloor to sup-

press tensile failure, no corrugation is produced (Figure 50.b). This verifies that the corru-

gation is related to tensile failure at the exposed fault plane.

In addition, when seeds are added along the whole ridge segment, which results in

synchronous faulting, no corrugation is generated (Figure 51). This verifies that along

ridge asynchronous faulting induced isochron-parallel tensional stress is necessary for

creating corrugations.

As mentioned in Smith et al. [2014], wavelength of corrugations varies from meters

to kilometers. Different scales corrugations sometimes coexist on the surface of a sin-

gle OCC (e.g., MacLeod et al., 2009). Although corrugation is a widely observed phe-

nomenon, its formation mechanism is still mysterious [Smith et al., 2006]. Several hy-

potheses are proposed. Spencer [1999] explains the corrugation by applying the contin-

uous casting model which is analogical to the industrial casting process that the hot and

ductile footwall of a detachment fault is continuously exhumed to the surface while being

casted by the cold and brittle hanging wall. The domal shape of the corrugation is pro-
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Figure 50: a) Plastic strain evolution of simpler 3D model with 4 km of seawater pressure
on top; b) Plastic strain evolution of simpler 3D model with 10 km of seawater pressure
on top. Seeds (elements with initial plastic strain) are partially added along the ridge
segment.

duced following the shape of the hanging wall. This hypothesis is similar to the formation

mechanism of the mullion structure produced in our models. Smith et al. [2014] proposes

another hypothesis that pre-existing offsetted faults along the ridge break through and

connect to each other and form a curved termination that can produce corrugations. This

is called the anastomosing behavior (e.g., Ferrill et al., 1999; Wong and Gans, 2008) and

is also produced in our models especially when inward fault jumps, antithetic faults or

tensile failures happen at only part of the ridge segment which perturbs the continuity

of the termination along the ridge. In addition, Tucholke et al. [1998] mentioned that as

oceanic lithosphere moves off axis, horizontally isochron-parallel extension is possible

due to the contraction of the cooling lithosphere.

Besides these hypotheses, I proposed that the asynchronous faulting induced tensile

failure due to varying M along the ridge axis as another possible formation mechanism for
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Figure 51: Simpler 3D model with 4 km of seawater pressure on top. Seeds are added
along the whole ridge segment. Color scale is the same as Figure 21.

the relatively uniform ∼2 km corrugations. These corrugations can also be superimposed

onto the surfaces of mullion structures or OCCs.
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5 Conclusions

I model in 3D how M varying along a mid-ocean ridge segment can control the interac-

tions between tectonics and magmatism and thereby produce the major bathymetric fea-

tures observed on the seafloor. Six commonly observed MOR features are produced in

our model which are inward fault jump, fault alternation, mass wasting, hourglass me-

dian valley, corrugation, and mullion structure. I show that, by comparing these features

of the models and field observations, faulting history and spatial and temporal variation of

magma supply can be inferred for a ridge segment.

Three controlling parameters are investigated. They are three ranges of M (i.e., M28,

M57 and M58); three types of functional forms of M variation (i.e., linear, sinusoidal and

sqaure root) as well as two types of weakening rates (i.e., faster type 1 and slower type

2). Although different structural features are generated by different functional forms and

ranges of M variations along the ridge, the average M value (M̄ ) along the whole ridge

segment controls off-axis morphologies. When M̄ > 0.6425 with type 2 weakening,

spreading occurs symmetrically and short-wavelength abyssal hills are produced. In con-

strast, when M̄ ≤ 0.6425, a long lasting detachment fault forms, which can exhume ul-

tramafic rocks to the seafloor producing a domal OCC. Also, our 3D model results resolve

the discrepancy between previous 2D model studies and field observations that model

studies suggest OCC is produced when M varies from 0.3 to 0.5 but field observation re-

veals cases that OCC forms with observed M beyond both lower and upper limits. We

propose a new perspective that along ridge coupling can explain why OCCs can form for

M smaller than 0.3 or greater than 0.5. Finally, we propose that the asynchronous faulting

can generate along-ridge tensile stresses of a large enough magnitude to cause tensile fail-

ure on the surface of the dome of an OCC, producing corrugations widely observed on the

OCCs in nature.
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